Ein Gecko hinter einem Blatt

Haften wie ein Gecko: Mit einem neuen Verfahren verbessern Forscher die Haftungseigenschaften von Kunststoffoberflächen erheblich. (Bild: Tate Lohmiller – Unsplash)

Wenn ein Gecko die Wände hochklettert, gelingt das durch die große Kontaktfläche der hierarchischen und fibrillären Strukturen seiner Füße mit dem Untergrund. Einen ähnlichen Ansatz hat das Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS in Halle (Saale) für die Oberflächen von Kunststoffen umgesetzt. Diese werden durch Heißprägen in eine hierarchische Struktur gebracht, wobei Prägewerkzeuge aus Aluminiumoxid eingesetzt werden, die zuvor mit einem Laser und durch ein selbstorganisierendes elektrochemisches Verfahren mikro- und nanostrukturiert wurden.

Für welche Kunststoffe eignet sich das neue Verfahren?

Das Verfahren eignet sich für die Strukturierung unterschiedlicher Kunststoffe wie thermoplastische Elastomere (TPE), thermoplastische Polyurethane (TPU), Polycarbonat (PC), Polymethylmethacrylat (PMMA), Polypropylen (PP) oder Polyethylen (PE). Die Prägewerkzeuge aus Aluminiumoxid lassen sich einfach in bestehende Produktionsverfahren der Kunststoffverarbeitung integrieren. Das Abformen erfolgt bei hohen Temperaturen und niedrigem Druck. Nach dem Auskühlen unter Belastung erfolgt die Entformung durch Abziehen des Polymermaterials vom Prägewerkzeug.

Rasterelektronenmikroskop-Darstellung der hierarchischen Struktur in einer Polycarbonat-Oberfläche.
Rasterelektronenmikroskop-Darstellung der hierarchischen Struktur in einer Polycarbonat-Oberfläche. (Bild: Fraunhofer IMWS)

Welchen Effekt erzielt das Verfahren?

Um den Prozess zu optimieren, wurden vom Fraunhofer-Team die passenden Verarbeitungstemperaturen auf Basis der durch Differenzialkalorimetrie (DSC) erhaltenen Glasübergangs- und Schmelztemperaturen ermittelt. Die Mikro-/Nanostruktur der Prägewerkzeuge und die damit erzeugte Inversstruktur der Polymeroberfläche mit feinsten Nanofilamenten wurde mit Rasterelektronenmikroskopie (SEM) untersucht. Auf nassen Oberflächen (Keramik, Glas, Metall) konnte mit der Gecko-Methode eine Erhöhung der Haftkraft um bis zu 85,4 Prozent erreicht werden.

Die Oberflächenstrukturen lassen sich durch entsprechend gefertigte Werkzeuge individuell und zielgerichtet anpassen, was eine große Bandbreite an Anwendungsmöglichkeiten eröffnet. Naheliegend sind neue Lösungen für die Verpackungsindustrie zur Verbesserung der Haftung von Klebern und Druckfarben auf Folien, ebenso wie neue Ansätze, mit denen sich das Beschlagen von Kunststoffoberflächen verhindern lässt, etwa in der optischen Industrie.

Welche Vorteile entstehen darüber hinaus?

„Ein großer Vorteil ist auch, dass wir unterschiedliche Oberflächenstrukturen und damit neue Materialeigenschaften erzielen können, ohne zusätzliche Elemente wie Additive oder Beschichtungen einzubringen. So können die Werkstoffe sortenrein bleiben, was das spätere Recycling erheblich vereinfacht“, sagt Dr.-Ing. Andrea Friedmann, Gruppenleiterin „Biofunktionale Materialien für Medizin und Umwelt“ am Fraunhofer IMWS. „Auch langwierige und kostspielige Zulassungsverfahren werden vermieden, weil die Mikro-Nano-Strukturierung auf bereits zugelassenen und chemisch nicht veränderten Materialien erfolgt. So können Unternehmen viel Zeit und hohe Kosten bei der Einführung verbesserter Produkte sparen.“

Quelle: Fraunhofer IMWS

Alles zum Thema Biokunststoffe

Eine Hand reißt einen Papierstreifen weg. Darunter steht das Wort "Biokunststoff"
Wissenswertes über Biokunststoffe finden Sie in unserem Übersichtsartikel. (Bild: thingamajiggs - stock.adobe.com)

Auf dem Weg zu einer klimaneutralen Zukunft müssen verschiedenste Rädchen ineinander greifen. Doch wie schaffen wir es, die Dekarbonisierung unserer Gesellschaft umzusetzen? Biokunststoffe sind ein wichtiger Hebel um diesem Ziel näher zu kommen. Doch was wird unter einem Biokunststoff eigentlich verstanden? Wo werden diese bereits eingesetzt? Und ist "Bio" wirklich gleich "Bio"? Wir geben die Antworten. Alles, was Sie zu dem Thema wissen sollten, erfahren Sie hier.

Sie möchten gerne weiterlesen?

Unternehmen

Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Walter-Hülse-Straße 1
06120 Halle
Germany