Polymermembran

In die Mixed-Matrix-Membran wurden Nanomaterialien integriert, wodurch sich diese zum Abtrennen von CO2 aus Gasen eignet. (Bild: IAV/TH Köln)

Spin-Coater
Die Mixed-Matrix-Membran wurde mit Hilfe eines Spin-Coaters erstellt. (Bild: IAV/TH Köln)

Gemeinsam mit dem griechischen Institut Demokritos sowie den Unternehmen Future Carbon und Advise haben Forscher an der TH Köln eine Membran erstellt, mit der einzelne Gase aus Gasgemischen abgetrennt werden können. Im Fokus stand dabei das Gas CO2. Das Projekt mit dem Namen „CO2-Abtrennung mittels Nano-Carbon basierter Mixed-Matrix-Membranen“ (GG CO2) hatte eine Laufzeit von drei Jahren und wurde vom Bundesministerium für Bildung und Forschung gefördert.

„Biogas lässt sich unter anderem aus Abfällen regenerativ gewinnen. Problematisch ist, dass nicht aufbereitetes Biogas – ähnlich wie Erdgas oder Prozessabgase aus der Industrie – in der Regel eine beträchtliche Menge an Verunreinigungen wie Kohlenstoffdioxid enthält – das schmälert die Effizienz der Verbrennung“, sagt Prof. Dr. Tim Schubert vom Institut für Anlagen und Verfahrenstechnik (IAV) der TH Köln. „Die Einspeisung von Biogas in das Gasnetz findet heute auch mangels technisch einsetzbarer und ökonomisch tragbarer Lösungen der Aufreinigung noch nicht statt. Um den Brennstoff nutzbar zu machen und die gesetzlichen Anforderungen für die Einspeisung zu erfüllen, ist eine Aufreinigung erforderlich.“

Wie wird das CO2 aus dem Erdgasstrom gefiltert?

Membran-Testanlage
Auf Herz und Nieren wurde die Membran dann auf einer eigenen Testanlage überprüft. (Bild: IAV/TH Köln)

Forscher integrierten nun Nanomaterialien in eine Mixed-Matrix-Membran, die auf einer Polymermembran basiert. Mit Hilfe von Polymembranen funktioniert prinzipiell die Abtrennung von CO2 aus Erdgas, allerdings weisen sie insgesamt eine nur zu geringe Durchlässigkeit und damit Kapazität auf. Um die Polymermembran zu optimieren und damit bei gegebener Membranfläche mehr Kohlenstoffdioxid herauszufiltern, wurden sogenannte Carbon-Nanotubes – mikroskopisch kleine Kohlenstoff-Nanoröhrchen – in die Matrix hineingemischt.

„Um den Grundstoff für die Membran vorzubereiten, haben wir die Kohlenstoffpartikel mit Hilfe eines speziellen Verfahrens, der Redispergierung, in einer flüssigen Polymerlösung vereinzelt und die Verschlaufungen aufgelöst“, erklärt der wissenschaftliche Mitarbeiter Ruben Hammerstein. Im nächsten Schritt wurde aus der Dispersion, also dem Gemisch aus Polymerlösung und Carbon-Nanotubes, die Membran hergestellt. „Diese besteht aus einem Trägermaterial, das mechanisch stabil ist und den Druck des Gases aushält. Mit Hilfe eines sogenannten Spin-Coaters haben wir die poröse Trägermembran mittels Vakuum fixiert und sie mit bis zu 10.000 Umdrehungen rotieren lassen. Dadurch wird die Dispersion auf der Trägermembran sehr dünn verteilt und es entsteht eine homogene, wenige Mikrometer dicke Schicht, die oben aufliegt – das ist der gastrennende Teil der Membran“, so Hammerstein.

Welche Vorteile vereint die neue Membran?

Die Mixed-Matrix-Membran vereint die Vorteile von polymerbasierten Membranen, wie Skalierbarkeit der Produktion und niedrige Kosten, mit der Leistungsfähigkeit von kohlenstoffbasierten Nanowerkstoffen. Dazu zählen eine hohe Selektivität – also wie gut die Membran in der Lage ist, Gase voneinander zu trennen – sowie eine hohe Permeabilität, das ist die Gasmenge, die die Membran passiert. Die Gastrenneigenschaften der neuen Membran wurden mit einer eigens konstruierten Testanlage geprüft.

Quelle: TH Köln

Kostenlose Registrierung

Bleiben Sie stets zu allen wichtigen Themen und Trends informiert.
Das Passwort muss mindestens acht Zeichen lang sein.
*

Ich habe die AGB, die Hinweise zum Widerrufsrecht und zum Datenschutz gelesen und akzeptiere diese.

*) Pflichtfeld

Sie sind bereits registriert?