Phiolen im Labor

Ein neues Verfahren soll das Herstellen und Verarbeiten von Polydopamin ermöglichen. (Bild: Kesu - Fotolia.com)

Polydopamin besitzt aufgrund seiner einzigartigen Eigenschaften großes Potenzial für Anwendungen in der Medizin-, Sensor- und Sicherheitstechnik. Mit dem Verfahren der BAM ist es erstmals möglich, die dazu erforderlichen komplexen Mikrostrukturen im Bereich weniger Zehntausendstel Millimeter zu erzeugen.

Was kann das Zukunftsmaterial Polydopamin?

Das Polymer ist von der Natur inspiriert: Muscheln produzieren das Protein, um sich damit auf Oberflächen jeglicher Art festzusetzen. Seit einigen Jahren wird Polydopamin auch im Labor hergestellt. Weil es auf Materialien jeglicher Art anhaftet, ist es ein idealer „Klebstoff“, um Werkstoffe miteinander zu verbinden. Da Polydopamin gleichzeitig in hohem Maße biochemisch aktiv ist, eignet es sich hervorragend als Reaktor: Als dünne Schicht aufgetragen, kann es Oberflächen aus Metall, Keramik oder Polymeren einzigartige chemische und physikalische Eigenschaften verleihen. So sind künftige Anwendungen in der Labortechnik und sogenannte Lab-on-a-Chip-Systeme denkbar. Polydopamin könnte auch in der medizinischen Diagnostik, in der Gefäß- und Herzmedizin oder in der Neurotechnologie eingesetzt werden, etwa als Kontrastmittel, Bioklebstoff oder zur kontrollierten Freisetzung von Wirkstoffen.

Dazu müssen extrem geringe Mengen flüssigen Polydopamins auf eine Oberfläche aufgetragen und anschließend polymerisiert, also in einen Feststoff umgewandelt werden. Das Verfahren gleicht dem 3D-Druck, nur geht es bei dieser Spielart des molekularen Designs um wenige Zehntausendstel Millimeter. Mit bisherigen Verfahren ist es nicht möglich, die Morphologie der gewünschten Strukturen mit ausreichender Präzision zu kontrollieren.

 

Welche Rolle die Multiphotonenlithographie übernimmt

Ein Team der BAM um Ievgeniia Topolniak hat nun erstmals die Multiphotonenlithographie angewandt, um Mikrostrukturen aus Polydopamin aufzubauen. Dabei werden die einzelnen Schichten des flüssigen Ausgangsmaterials mit gepulstem Laserlicht bestrahlt und dadurch in das Polymer Polydopamin mit seinen herausragenden Eigenschaften umgewandelt. Indem sie die Photonen des Lasers absorbieren, polymerisieren die „Grundbausteine“ zu größeren Molekülen und gewinnen feste Gestalt. Über die Geschwindigkeit und Leistung des Lasers lässt sich das Design der Mikrostrukturen bis zum Bereich von einigen Zehntausendstel Millimetern mit hoher Präzision kontrollieren – eine Dimension, die bisher für Polydopamin unerreicht war.

Die Multiphotonenlithographie macht zahlreiche Anwendungsbereiche für Polydopamin, in denen solch eine Präzision der Mikrostrukturierung gefordert ist, erstmals realistisch. Die Erkenntnisse des BAM-Teams wurden aufgrund ihrer Bedeutung für die Materialwissenschaft jetzt in der renommierten Fachzeitschrift Advanced Materials veröffentlicht.

Quelle: BAM

Kunststoffrecycling: Der große Überblick

Mann mit Kreislaufsymbol auf dem T-Shirt
(Bild: Bits and Splits - stock.adobe.com)

Sie wollen alles zum Thema Kunststoffrecycling wissen? Klar ist, Nachhaltigkeit hört nicht beim eigentlichen Produkt auf: Es gilt Produkte entsprechend ihrer Materialausprägung wiederzuverwerten und Kreisläufe zu schließen. Doch welche Verfahren beim Recycling von Kunststoffen sind überhaupt im Einsatz? Gibt es Grenzen bei der Wiederverwertung? Und was ist eigentlich Down- und Upcycling? Alles was man dazu wissen sollte, erfahren Sie hier.

Sie möchten gerne weiterlesen?