Demonstrator einer additiv gefertigten, hinterleuchteten Türverkleidung.

Demonstrator einer additiv gefertigten, hinterleuchteten Türverkleidung. (Bild: Christian Bay, Fraunhofer IPA)

Ob Armaturenbrett, Zierleisten oder die hinterleuchteten Knöpfe und Schalter für Klimaanlage und Radio – viele Automobilkomponenten und elektrische Geräte besitzen Lichtelemente oder selektiv beleuchtete Symbole. Beim Autofahren hilft der Kontrast aus dunklem Hintergrund und hellem Symbol, die gewünschte Taste nachts schnell zu erkennen und sich weiter auf den Straßenverkehr zu konzentrieren.

Selbst für kleine Bauteile wie Tasten und Wippen sind für das Herstellen hinterleuchteter Symbole mehrere Materialien mit unterschiedlichen Lichtdurchlässigkeiten, diverse Prozessschritte oder eine wechselnde Bauteildicke nötig. Dabei werden die einzelnen Materialien meist untrennbar miteinander verbunden, was die Recyclingfähigkeit stark reduziert. Die Projektgruppe Prozessinnovation des Fraunhofer-Instituts für Produktionstechnik und Automatisierung IPA und das Technologie Impact Hub des Lehrstuhls Umweltgerechte Produktionstechnik der Universität Bayreuth nutzen die Additive Fertigung, um das Fertigen dieser funktionalisierten Kunststoffbauteile ökologischer und ökonomischer zu gestalten.

Wie Pulver Transluszenz schafft

Als Ausgangsmaterial für die additive Fertigung selektiv transluzenter Bauteile nutzt das Forschungsteam um Marco Wimmer fein gemahlene, thermoplastische Kunststoffpulver. In Frage kommen beispielsweise weiche thermoplastische Elastomere, steife Kunststoffe wie Polybutylenterephthalat (PBT) oder transparente beziehungsweise transluzente Copolymere. Diese und weitere kommerziell verfügbare oder noch in der Entwicklung befindliche Kunststoffpulver parametrisieren die Bayreuther Wissenschaftlerinnen und Wissenschaftler für das High Speed Sintering (HSS) und verarbeiten sie testweise. Seine Ergebnisse präsentiert das Forschungsteam im "HSS-Material Network", einem Netzwerk zur Steigerung der Verfügbarkeit von Kunststoffpulvern für Dienstleister und Anwender.

HSS zählt zu den Pulverbettverfahren des "Powder Bed Fusion of Polymers with Infrared Radiation" (PBF-IR/P), einer Gruppe von additiven Fertigungsverfahren, bei denen eine dünne Schicht Kunststoffpulver auf eine beheizte Bauplattform aufgetragen und mittels Inkjet-Druckköpfen mit einer rußhaltigen Tinte benetzt wird. Anschließend überfährt eine Infrarot-Strahlungsquelle das Pulverbett. Der Ruß in der Tinte absorbiert die Strahlung, erwärmt sich und bringt das Kunststoffpulver selektiv zum Schmelzen. Indem das Forschungsteam die Tintenauftragsmenge variiert, kann es die Bauteileigenschaften lokal gezielt beeinflussen.

Schwarze Platte mit verschiedenen Mustern, die grün hinterleuchtet sind
Die herstellbaren Muster erlauben eine hohe Kreativität. (Bild: Christian Bay, Fraunhofer IPA)

Welche Aufgabe dem Ruß zukommt

Ob ein Bereich lichtdurchlässig ist, entscheidet die Menge an Ruß, die lokal über die Tinte auf das Kunststoffpulver aufgebracht wurde. Für das Schmelzen des Kunststoffpulvers wird nur eine kleine Menge an Ruß benötigt. Sie färbt das Bauteil leicht hellgrau, doch die transluzenten Eigenschaften des Kunststoffpulvers überwiegen. Wird mehr als die zum Schmelzen des Kunststoffpulvers benötigte Minimalmenge an Ruß aufgebracht, nimmt die Lichtdurchlässigkeit lokal entsprechend ab.

Die Bayreuther Wissenschaftlerinnen und Wissenschaftler nutzen diese Wechselwirkung gezielt aus, um additiv gefertigte Bauteile mit hochaufgelösten Mustern, Schriftzügen und Symbolen herzustellen und mithilfe einer Lichtquelle zum Leuchten zu bringen. Aufgrund der hohen Druckauflösung der Inkjet-Druckköpfe können neben harten Hell-Dunkel-Kontrasten auch fließende Übergänge realisiert werden.

Ökologisch und ökonomisch auf der Überholspur

Individualisierte Muster, Schriftzüge und Symbole, komplexe dreidimensionale Strukturen mit Lichtelementen oder transluzente Bauteile für Kombinationen aus Sensorik und Beleuchtung – all das kann mit diesem 3D-Druckverfahren in einem einzigen Fertigungsschritt und ohne konstruktive Anpassung von Bauteildicken produziert werden. Und weil die Kunststoffbauteile durchgängig aus demselben Material bestehen, können sie ohne Weiteres recycelt werden.

Quelle: Fraunhofer IPA

Kunststoffrecycling: Der große Überblick

Mann mit Kreislaufsymbol auf dem T-Shirt
(Bild: Bits and Splits - stock.adobe.com)

Sie wollen alles zum Thema Kunststoffrecycling wissen? Klar ist, Nachhaltigkeit hört nicht beim eigentlichen Produkt auf: Es gilt Produkte entsprechend ihrer Materialausprägung wiederzuverwerten und Kreisläufe zu schließen. Doch welche Verfahren beim Recycling von Kunststoffen sind überhaupt im Einsatz? Gibt es Grenzen bei der Wiederverwertung? Und was ist eigentlich Down- und Upcycling? Alles was man dazu wissen sollte, erfahren Sie hier.

Sie möchten gerne weiterlesen?

Unternehmen

Universität Bayreuth Lehrstuhl für Polymere Werkstoffe Polymer Engineering - IMA II

Universitätsstr. 30
95440 Bayreuth
Germany

Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Nobelstr. 12
70569 Stuttgart
Germany