
Der neu entwickelte Transportroboter kann unter diverse Handwagen fahren, diese aufnehmen und zum vorgegeben Ziel bringen. (Bild: Rainer Bez)
In vielen großen Kliniken werden bereits fahrerlose Transportfahrzeuge eingesetzt, allerdings sind diese nur in separaten Versorgungstrakten nutzbar. Inzwischen gibt es auch erste Serviceroboter, die sich unter Menschen bewegen und so den Transport innerhalb einer Station oder eines Wohnbereichs unterstützen können. Die größeren dieser Roboter, die für das Tragen von Containern gedacht sind, haben jedoch oft Schwierigkeiten, in den engen Krankenhausfluren sicher und zuverlässig zum Ziel zu kommen. Kleinere Roboter erlauben dagegen nur den Transport von wenigen Einzelartikeln und bieten somit nur eine begrenzte Entlastung.
Warum der Roboter als Unterfahrschlepper konzipiert ist

Der vom Fraunhofer-Projekt "MobDi – Mobile Desinfektion" geförderte und vom Wissenschaftler Theo Jacobs am Fraunhofer IPA, Stuttgart, entwickelte Transportroboter schließt diese Lücke. Als Unterfahrschlepper konstruiert, kann der Roboter mit seinem Fahrgestell unter verschiedene Pflegewagen oder Container fahren, diese anheben und autonom bis zu dem Patienten- oder Bewohnerzimmer bringen, in dem die Inhalte benötigt werden. Weitere Informationen zum Projekt MobDi erhalten Sie hier.
Im Gegensatz zu anderen Transportrobotern setzt dieses Gerät auf einen omnidirektionalen Antrieb mit speziellem Fahrwerk, mit dem sich der Roboter auch seitwärts bewegen kann. "Das ist wichtig, um eine schnellere Aufnahme von Lasten und das gefahrlose und zugleich zielgerichtete Fahren in engen oder voll gestellten Umgebungen zu ermöglichen", erklärt Jacobs. "Außerdem ist das Fahrgestell in Länge und Breite variabel. So kann der Roboter Handwagen und Container verschiedener Größe und mit unterschiedlichen Radständen transportieren und braucht nur wenig Platz. Insgesamt ermöglichen die Bewegungen des Roboters einen intuitiven Umgang mit ihm, weil er sich ähnlich dem Menschen auch seitwärts bewegen kann", ergänzt Jacobs.
Damit der Roboter an Orten fahren kann, an denen sich nicht eingewiesene Personen aufhalten, ist er mit umfangreicher 360-Grad-Sicherheitssensorik ausgestattet, die Hindernisse auch nach hinten unter der Last hindurch detektiert. Kameras und Algorithmen der Bildverarbeitung erkennen aufzunehmende Wagen und ermitteln automatisch die notwendige Bewegung zum Andocken und Anheben der Last. Der Roboter muss vorab nur die ungefähre Position eines Wagens kennen, den er abholen soll.
Wichtiges Ziel war, dass der Transportroboter die bereits jetzt in Einrichtungen vorhandenen Handwagen transportieren kann, ohne dass diese aufwendig umgerüstet werden müssen. Lediglich eine gewisse Bodenfreiheit zum Unterfahren des Wagens muss gegeben sein. Ein einzelner Roboter genügt, um beispielsweise den Wäschetransport für ein komplettes Pflegeheim zu automatisieren. Wenn Zeit ist, kann der Roboter weitere Transportdienste für Medikamente, Verbandsmaterial und mehr übernehmen. Zeitgesteuert können Routinetransporte ausgeführt oder spontan über ein Tablet oder Smartphone angefordert werden. "Je nach Anwendungsszenario und Integration in etablierte Abläufe in den Einrichtungen ist der Wagen für die reguläre Patientenversorgung oder für den spontanen Einsatz oder Springerdienst nutzbar", erläutert Jacobs die Einsatzmöglichkeiten
Wie es um die Wirtschaftlichkeit steht
Ein Forscherteam des Fraunhofer-Zentrums für Internationales Management und Wissensökonomie IMW unter Leitung von Dr. Marija Radic untersuchte die Wirtschaftlichkeit des Roboters auf Basis einer Lebenszykluskostenrechnung. Diese umfasst alle Kosten, die auf den gemessenen und zukünftig erreichbaren Leistungsdaten und den Kosten des Roboters von der Anschaffung bis zur Entsorgung anfallen. Als Vergleichswert wurden die Kosten einer Hauswirtschaftskraft herangezogen, die lediglich die genannten Transporte durchführt. Diese verbringt derzeit täglich mehrere Arbeitsstunden mit dem Transport von Schmutzwäsche von allen Wohnbereichen zu einem Lagerbereich im Keller. Hinzu kommt das Verteilen von Frischwäsche auf die Wohnbereiche.
"Übernimmt ein Roboter den gesamten Transport der Schmutz- und Frischwäsche, kann er bereits bei einer Abschreibungsdauer von drei Jahren wirtschaftlich eingesetzt werden. Die Wirtschaftlichkeit lässt sich noch deutlich steigern, wenn der Roboter weitere Transportdienste übernimmt", erläutert Dr. Marija Radic, Abteilungsleiterin am Fraunhofer IMW. In diesem Szenario arbeitet der Roboter inklusive Ladevorgängen rund um die Uhr.
Warum langjähriges Wissen wichtig ist
Mit dem neuen Transportroboter knüpft Theo Jacobs an das langjährige und umfassende Fachwissen des Fraunhofer IPA zur Entwicklung von Assistenzsystemen für die stationäre Pflege an. So präsentierte das Institut bereits 2018 einen "intelligenten Pflegewagen" als Ergebnis des Projekts SeRoDi (Servicerobotik für personenbezogene Dienstleistungen). Dieser bestand aus einem Korpus mit Schubladen, der fest auf einer ebenfalls autonom navigierenden Roboterplattform verbaut war. Über den integrierten Touchscreen und Sensor konnte das Pflegepersonal verbrauchtes Material leicht dokumentieren. Das nun umgesetzte modulare Konzept trägt dazu bei, den Roboter flexibler und damit auch wirtschaftlicher einsetzbar zu machen.
Dabei können auch mit dem neuen Transportroboter praxiserprobte Technologien aus dem SeRoDi-Projekt weiterverwendet werden. Beispielsweise könnte ein passiver, vom Transportroboter bewegter Pflegewagen mit der entsprechenden Sensorik und Intelligenz ausgestattet werden, um Materialverbräuche automatisch zu erfassen, die Pflegedokumentation zu erstellen und die Materialbestellung zu unterstützen. Für die Lagerung kleinteiliger Transportgüter wie zum Beispiel Pflegeprodukte oder Verbandsmaterial ist das im Forschungsprojekt SeRoDi verfolgte Konzept mit vorgepackten ISO-Modulkörben weiterhin nutzbar. Sie ermöglichen, durch das Austauschen vorgepackter Modulkörbe ausgegangenes Material schnell wieder aufzufüllen. Dies unterstützt insbesondere das automatische Nachfüllen der Pflegewagen, zum Beispiel in einem entsprechend umgerüsteten Lager.
Der neu entwickelte Transportroboter soll in den nächsten Monaten in Pflegeeinrichtungen getestet und die Technik anhand der dort gewonnenen Erkenntnisse entsprechend weiterentwickelt und optimiert werden. Parallel dazu werden mögliche Hersteller und Vertriebspartner angesprochen, die den Roboter in Zukunft als Serienprodukt weiterentwickeln und vertreiben wollen.
Quelle: Fraunhofer IPA

Kunststoffe, die in der Medizin zum Einsatz kommen, müssen besondere Eigenschaften erfüllen. Die Grundanforderungen an Materialien für die Medizintechnik etwa sind Biokompatibilität, Sterilisierbarkeit, Temperatur- und Chemikalienbeständigkeit. Die Anforderungen unterscheiden sich dabei im Einzelnen zwischen Materialien, die außerhalb des Körpers, und solchen, die – im Körper etwa als Implantate – zum Einsatz kommen. Biomaterialien – also Werkstoffe, die sich mit Körperzellen vertragen – dürfen keine schädigende Wirkung auf Organismus verursachen, sondern müssen vom Körper toleriert oder, im günstigsten Fall, wie körpereigenes Material akzeptiert werden. Wichtig ist außerdem, dass von dem Material keine toxische Wirkung auf den Organismus ausgeht. Festgelegt sind diese Anforderungen in verschiedenen Vorschriften und Richtlinien, beispielsweise der EU-Richtlinie 93/42/EWG, die auch als „Medical Device Directive“ bekannt ist. Seit 2019 definiert und beschreibt die VDI-Richtlinie 2017 speziell für den Bereich der Kunststoffe, was unter Medical Grade Plastics zu verstehen ist und welche Eigenschaften und Anforderungen maßgeblich sind. (Bild: Paul Vinten – Fotolia)

Polyethylen (PE) ist nicht nur insgesamt der weit verbreitetste Kunststoff, sondern spielt auch im medizinischen Einsatz eine große Rolle. Der Werkstoff kommt vor allem in Verpackungen für klinische und pharmazeutischer Produkte zum Einsatz, so etwa in Flaschen oder Folien, aber auch beispielsweise in Spritzen. Vor allem Polyethylene hoher Dichte, sogenanntes PE- HD, zeichnet sich dabei durch eine hohe Formfestigkeit und Chemikalienbeständigkeit aus. Das Material kommt daher etwa auch für Implantate, zum Beispiel als Hüftgelenkpfannen in der Orthopädie, zum Einsatz. Außerdem lässt sich etwa bei Behältern aus PE der Einfluss von migrierenden Additiven vermeiden. (Bild: catsnfrogs – Fotolia)

Das zweite besonders häufig in der Medizin eingesetzte Polymer ist Polyvinylchlorid, besser bekannt als PVC. Für den Werkstoff sprechen vor allem der geringe Preis, auch im Vergleich zu anderen Kunststoffen, sowie die einfache Verarbeitbarkeit. Das Material ist außerdem sehr gewebe- und blutverträglich. Aufgrund dieser Eigenschaften kommt PVC vor allem in Einweg-Produkten wie Blutbeutel und Handschuhe oder Katheter, aber auch für Schläuche und sterilisierbare Verkleidung von medizinischen Geräten zum Einsatz. Als Problem von Weich-PVC gilt zunehmend, dass der Kunststoff meist phthalathaltige Weichmacher wie Diethylhexylphthalat (DEHP), das nicht chemisch gebunden ist und damit in seine Umgebung migrieren kann. Dem Additiv werden fortpflanzungsschädigende Eigenschaften zugeschrieben. Weich-PVC enthält bis zu 40 Gewichtprozent an DEHP. Während der Stoff in Kinderspielzeug oder Kosmetika verboten ist, gilt das Additiv in Medizinprodukten als weitgehend unverzichtbar. Hersteller müssen jedoch jeweils darlegen können, warum sich keine Alternativen zu DEHP einsetzen lassen. (Bild: Stephan Morrosch – Fotolia)

Für Verpackungen aller Art kommt im medizinischen Bereich vor allem Polystyrol (PS) zum Einsatz. Durch seine hohe Transparenz und ist der Thermoplast vor allem in Anwendungen zu finden, in denen sonst Glas zum Einsatz kommen würde, also etwa in Behältern für infektiöses oder toxisches Material oder im Laborbereich in Petrischalen und Ähnlichem. PS findet jedoch beispielsweise auch als Folie in Medikamentenblistern Verwendung. Expandiertes Polystyrol (EPS), weit bekannt unter dem Handelsnamen Styropor, dient als Schaumstoff dagegen dem Schutz von empfindlichen Produkten. Außerdem leistet das Material durch seine wärmedämmende Wirkung seinen Dienst in der Kühlkette beim Transport von Medikamenten und aktuell in der Logistik von Covid-19-Impfstoffen. (Bild: ggw – Fotolia)

Auch Polypropylen (PP) kommt hauptsächlich für die Verpackung zum Einsatz, beispielsweise wiederum in Medikamentenblistern, aber auch für Einwegspritzen oder Infusions-Bestecke. Hitzestabilisierte Polypropylen-Typen sind darüber hinaus gut zu sterilisieren. Außerdem kommt PP auch in Implantaten zum Einsatz. Außerdem spielt PP durch seine glatte Oberfläche als Nahtmaterial eine große Rolle. (Bild: ThKatz – Fotolia)

PE, PVC, PS und PP sind die mit Abstand gängigsten Polymere in der medizinischen Anwendung und stehen zusammen für 80 bis 90 % der dort eingesetzten Kunststoffe. Daneben gibt es noch eine Reihe anderer Kunststoffe in der Medizintechnik. Bereits seit etwa 20 Jahren wird beispielsweise auch Polyetheretherketon (PEEK) für Implantate in der Wirbelsäulen- und Gesichtschirurgie verwendet. Aufgrund eher unvorteilhafter Oberflächeneigenschaften ist der Werkstoff aber nicht weit verbreitet. Nitril-Polymere wiederum finden durch ihre chemische Beständigkeit und die gummiähnlichen Eigenschaften für Schutzhandschuhe Anwendung. (Bild: April Cat – Fotolia)
Sie möchten gerne weiterlesen?
Registrieren Sie sich jetzt kostenlos:
Mit der Registrierung akzeptiere ich die Nutzungsbedingungen der Portale im Industrie-Medien-Netzwerks. Die Datenschutzerklärung habe ich zur Kenntnis genommen.
Sie sind bereits registriert?
Hier anmeldenUnternehmen
Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA
Nobelstr. 12
70569 Stuttgart
Germany
Diskutieren Sie mit