Forscher am Fraunhofer IWU vor einer Maschine. Sie wollen CO2-einsparende Batteriegehäuse für E-Autos entwickeln.

Teil des Coobat-Projektteams beim Partner Compositence in Leonberg. Sie wollen Batterien für E-Autos nachhaltiger gestalten. (Bild: Fraunhofer IWU)

Gehäuse für Batteriesysteme in E-Autos klimafreundlicher herzustellen und so zu einer verbesserten CO2-Bilanz der Fahrzeuge beizutragen, ist das Anliegen der Partner aus Industrie und Forschung im Projekt CO2-einsparende Leichtbaulösungen am Demonstrator Batteriegehäuse der nächsten Generation, kurz Coolbat. Denn die aktuellen Batteriegehäuse mit Strukturen zur Lastverteilung und Temperaturregulierung, Rahmen, Deckeln sowie Bodenplatten bieten nach wie vor Optimierungspotenzial für CO2-einsparende Lösungen.

Im Projekt forschen 15 Partner interdisziplinär an innovativen Leichtbau-Konstruktionsprinzipien zur Masseeinsparung, Leichtbaumaterialien und -produktionsverfahren. Die Partner verfolgen einen breitgefächerten Ansatz, der Aspekte wie Kreislauf- und Reparaturfähigkeit, Ressourcen- und Energieeffizienz, Sicherheit und Brandschutz auf Konstruktions- und Materialebene in den Fokus rückt. Das Fraunhofer IWU in Chemnitz koordiniert das Vorhaben, das vom Bundesministerium für Wirtschaft und Klimaschutz BMWK im Rahmen des Technologietransfer-Programms Leichtbau (TTP-LB) gefördert und durch den Projektträger Jülich (PTJ) betreut wird.

Ein Hinweis in eigener Sache

5 Menschen lehnen auf einem Tisch und strahlen in die Kamera
(Bild: Redaktion)

Wir haben einen neuen Standplatz auf der Fakuma!

Besuchen Sie uns – das Team von PLASTVERARBEITER und KGK – in diesem Jahr in Halle B1, Stand 1002 und holen sich druckfrischen Lesestoff ab.

Wir freuen uns auf Sie!

Welche Ziele setzt sich das Projekt Coolbat?

Das Prinzip ist einfach: Je leichter die Gehäuse, umso mehr steigt die Reichweite der Elektroautos, da der Stromverbrauch sinkt. „Die Energiedichte heutiger Batteriesysteme, auf die Batteriegehäuse wesentlich einzahlen, lässt sich noch deutlich steigern. Durch die Integration von neuen Leichtbauweisen und mehr Funktionen auf kleinerem Bauraum bei weniger Schnittstellen lässt sich Gewicht verringern und zugleich eine CO2-Einsparung von 15 Prozent erreichen“, sagt Rico Schmerler, Projektleiter und Wissenschaftler der Abteilung Batteriesysteme am Fraunhofer IWU. „Über die Massereduktion erhöhen wir bei gleicher Batteriezellzahl die Energiedichte und somit die Reichweite. Durch die Ausführung des Gehäusedeckels in Faserverbundbauweise konnten wir die Masse um mehr als 60 Prozent reduzieren im Vergleich zur Referenz aus Stahl.“

Mercedes-EQS-Batterie.
Als Referenz und Technologieträger dient den Forschern die Mercedes-EQS-Batterie. (Bild: FraunhoferIWU/AES)

Wie wird das Batteriegehäuse umgesetzt?

Aluminiumschaumsandwich-Bodenpanel mit integrierter Kühlstruktur
Aluminiumschaumsandwich-Bodenpanel mit integrierter Kühlstruktur. (Bild: Fraunhofer IWU)

Eine weitere Möglichkeit zur Gewichtsreduktion sehen die Forscher in der Kombination von Einzelsystemen im Gehäuse, die bislang thermische und mechanische Aufgaben separat übernommen hatten. Beispielsweise sind Temperierkanäle direkt in Tragstrukturen wie in Querträgern integriert – gießtechnisch hergestellt am Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM.

Zusätzlich wird die Funktion der Kühleinheit mit der des Unterfahrschutzes in einer Komponente, der Bodenplatte, verbunden. Für die Energieabsorption bei Steinschlag und Unfällen sorgt ein in die Bodenplatte eingebrachter Aluminiumschaum. Er nimmt einen großen Teil der Energie auf, die beim Aufprall entsteht. Im Verbund mit einem Phasenwechselmaterial (PCM), einer Art Wachs, das viel Wärme- und Kälteenergie speichern und wieder abgeben kann, senkt der Aluminiumschaum zusätzlich den Energieaufwand zur Kühlung der Elektrobatterie. Die Bodenplatte wurde vom Fraunhofer IWU und dem Unternehmen FES/AES entwickelt und inklusive Schaum am Fraunhofer IWU gefertigt.

Die Batteriezellen werden auf diese Weise vor mechanischen Lasten und zugleich vor Überhitzung geschützt. Dabei durchströmt ein Fluid die Kanäle und temperiert die Zellen nicht nur von unten, sondern auch seitlich. Dadurch verringert sich der elektrische Verbrauch für die Kühlung der Zellen, und man kann an anderer Stelle im Auto auf Kühlelemente verzichten. „Wir setzen auf funktionsintegrierte Strukturen. Aufgaben, für die bisher verschiedene Module innerhalb der Batterie zuständig waren, integrieren wir in einem Bauteil – in diesem Fall in der Bodengruppe – und sparen so Bauraum und Schnittstellen“, erklärt Schmerler. „Die Bodenplatten schützen künftig vor Überhitzung und wenden bei Unfällen Beschädigungen des Batteriekerns ab.“ Als Referenz und Technologieträger dient den Forschern die Mercedes-EQS-Batterie.

Warum bisherige Pasten ersetzt werden

Die Qualität der Wärmeabfuhr von Batterien in Richtung Außengehäuse wirkt sich stark auf die Leistungsfähigkeit und die Lebensdauer eines Elektrofahrzeugs aus. Üblicherweise wird das Batteriemodul über leitfähige Pasten thermisch angebunden. Im Projekt sollen die schweren, nicht nachhaltigen Pasten durch umweltfreundliche Wärmeleitstoffe ersetzt werden. Hierfür metallisiert das Fraunhofer-Institut für Schicht- und Oberflächentechnik IST per Plasmaverfahren offenporige, wiederverwendbare Schäume, die in Form von Matten in die Räume zwischen Batterie und Gehäuse eingelegt werden.

Einsatz von biobasierten Flammschutzbeschichtungen

Für mehr Sicherheit sorgt eine neue Brandschutzbeschichtung, eine Entwicklungsleistung des Fraunhofer-Instituts für Holzforschung, Wilhelm-Klauditz-Institut, WKI. An der Unterseite des Gehäusedeckels aufgetragen, verhindert sie die Ausbreitung von Feuer, das von darunter liegenden Batteriezellen ausgehen kann. Ein Bestandteil der Beschichtung ist das biobasierte Material Lignin, das erdölbasierte Werkstoffe substituiert und nicht brennbar ist.

Stahl durch Faserverbundwerkstoffe ersetzen

Der bisherige Gehäusedeckel aus Stahl wurde durch eine neue Faserverbund-Deckelstruktur aus Kohlenstoff und Harz – sogenannte Towpregs – ersetzt, was nicht nur zu einer deutlichen Massereduktion führte, sondern auch zur erneuten Verwendbarkeit des Deckels. Das System aus Deckel, Rahmen und Bodenplatten wurde so konstruiert, dass es sich bis auf Komponentenebene zerstörungsfrei trennen und demontieren lässt. „Wir verfolgen hier den Gedanken der Kreislaufwirtschaft und Materialreduktion durch Leichtbau und wiederverwendbare Werkstoffe, was wiederum einen geringeren CO2-Footprint und geringere Kosten im Reparaturfall zur Folge hat“, sagt der Ingenieur.

Die vielfältigen Projektergebnisse sollen später auch auf andere Anwendungen und Branchen übertragen werden, in denen große Batterien zum Einsatz kommen – etwa in Zügen, Flugzeugen und Booten. Die Kühlsysteme ließen sich auf Lebensmittel- und Medizintransporte transferieren, die Brandschutzlösungen auf Gebäude.

Partner im Projekt Coolbat sind Auto-Entwicklungsring Sachsen FES/AES, Invent, Compositence, ipoint-systems, Tigres, LXP Group, Basdorf, Lampe & Pertner, MID Solutions, Synthopol Chemie, Trimet Aluminium, Mercedes-Benz sowie das Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM, das Fraunhofer-Institut für Schicht- und Oberflächentechnik IST und das Fraunhofer-Institut für Holzforschung, Wilhelm-Klauditz Institut WKI.

Quelle: Fraunhofer

Kunststoffrecycling: Der große Überblick

Mann mit Kreislaufsymbol auf dem T-Shirt
(Bild: Bits and Splits - stock.adobe.com)

Sie wollen alles zum Thema Kunststoffrecycling wissen? Klar ist, Nachhaltigkeit hört nicht beim eigentlichen Produkt auf: Es gilt Produkte entsprechend ihrer Materialausprägung wiederzuverwerten und Kreisläufe zu schließen. Doch welche Verfahren beim Recycling von Kunststoffen sind überhaupt im Einsatz? Gibt es Grenzen bei der Wiederverwertung? Und was ist eigentlich Down- und Upcycling? Alles was man dazu wissen sollte, erfahren Sie hier.

Sie möchten gerne weiterlesen?

Unternehmen

Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU

Heidealle 19
06120 Halle
Germany