Carbonfaserverstärkte Strukturen mit thermoplastischer Matrix

Faserstrukturen mit thermoplastischer Matrix sind eine Alternative zu klassischen CFK. Diese neue Technologie am Übergang von der Forschung in die Fertigung ist das Hauptthema der Kongressmesse ITHEC am 30. Oktober in Bremen, einer Kooperation von Messe Bremen und dem Faserinstitut Bremen.

Wo immer Strukturteile mit hoher Festigkeit Stahl oder Aluminium ersetzen sollen, ist bislang Geduld gefragt. Denn bei der Herstellung von Faserstrukturen in Form von Geweben, Gelegen oder Gewirken sowie dem Umschließen der Fasern mit flüssigen Harzen lassen der geringe Automatisierungsgrad und lange Aushärtezeiten die Zykluszeiten anschwellen. Statt mehrerer Stunden verlangt vor allem der auf Großserienfertigung ausgerichtete Automobilbau pro Bauteil Zykluszeiten von einer bis maximal zwei Minuten. Technologien, bei denen die Fasern in eine thermoplastische Matrix eingebettet werden, könnten diese Anforderungen erfüllen. Denn mit Thermoplasten sinkt der Zeitbedarf für die Herstellung eines hochfesten Strukturteiles auf das geforderte Niveau. Denn anders als Duroplaste werden Thermoplaste durch Erhitzung flüssig und erstarren nach einer kurzen Abkühlphase wieder – wobei sich der Aggregatzustand immer wieder verändern lässt, wodurch die mehrstufige Herstellung komplexer Bauteilgeometrien möglich wird. Der Teilefertigung im Minutentakt steht nahezu nichts mehr im Weg.

Thermoplastischer Leichtbau kontra Metall-Leichtbau

Allerdings soll nicht der Eindruck entstehen, es gehe momentan um die Substitution der duroplastischen durch thermoplastische Matrixsysteme. Schließlich waren diese bislang wegen der hohen Kosten und der langen Zykluszeiten eher in Formel-1- Rennwagen zu finden, als in Pkw der Ober- und Mittelklasse. Doch genau das soll und muss sich ändern, wenn die Automobilindustrie durch konsequenten Leichtbau Treibstoffe einsparen und E-Mobilen akzeptable Reichweiten verleihen will. Also treten die faserverstärkten Thermoplaste nicht gegen die duroplastischen Matrixsysteme an, sondern viel mehr gegen Stahl, Aluminium und Magnesium in Form von Blechen, Rohrkonstruktionen aber auch Guss- und Sinterteilen. Und genau dabei greift die Entstehung vielfältiger Produktionstechnologien, wie die Verarbeitung von Halbzeugen in Form von Organoblechen oder -folien, die endlos von Coils, als Platten oder als maßgeschneiderte Prepregs auf Spritzgießmaschinen umgeformt und sogar hinterspritzt werden. Bei solchen Prozessen können hochfeste Strukturteile sogar komplexe Strukturen erhalten und im Sinne der Funktionsintegration zusätzliche Aufgaben wahrnehmen. So kann zum Beispiel ein tragendes Strukturteil zugleich Bestandteil eines Scheibenwasch-Flüssigkeitsbehälters werden.

Mehr Materialien und Fertigungsverfahren

Die wachsende Werkstoff- und Prozessvielfalt macht es Produktentwicklern und Produktionsexperten gleichermaßen schwer, vor lauter Bäumen den Wald nicht aus den Augen zu verlieren. Schließlich kann das Ziel, durch Leichtbau Gewicht zu sparen, nur erreicht werden, wenn die neuen Strukturen alle Anforderungen hinsichtlich Komfort und Sicherheit erfüllen und zugleich durch Funktionsintegration die Zahl der Fahrzeugteile reduziert werden kann. Dass viele der Vorteile auch in anderen Branchen Früchte tragen können, zeigt nicht zuletzt das Interesse der Luftfahrtbranche sowie des Windenergieanlagenbaus. Rotoren mit immer größeren Durchmessern bei zugleich zunehmenden Produktionszahlen lassen die WEA-Produzenten nach Alternativen zu duroplastischen Matrixsystemen Ausschau halten. Auch die dabei bereits erzielten Erfolge, aus denen auch der allgemeine Maschinenbau lernen kann, sind Gegenstand der ihrem Konzept nach einmaligen Kongressmesse ITHEC, bei der Wissenschaft und Wirtschaft eng zusammenrücken, um die schnelle Nutzung der neuen Technologie voranzubringen.

 

Sie möchten gerne weiterlesen?